TensorFlow Micro-controllers

Source

There are lot many ML practitioners who are not having any background in Embedded Platform. And on the other hand, Embedded developers also might not be familiar with ML algorithms. But why you need to bring ML to the microcontroller like Arduino Nano Clock 64 MHz, Flash 1 MB, RAM 256 KB.

Why should we run ML on Micro-controllers.?

By running machine learning inference on microcontrollers, developers can add AI to a vast range of hardware devices without relying on network connectivity, which is often subject to bandwidth and power constraints and results in high latency. Running inference on-device can also help preserve privacy since no data has to leave the device.

Jobs in AI

So these are some of the practical reasons:

  • Accessibility — Users want smart devices to respond quickly to the local environment. Also, it should consider all the market scenarios such as size, availability of Internet connectivity and many more.
  • Cost — Device should be within the lowest budget hardware fulfilling all the requirements.
  • Efficiency — Battery life, functionalities, range, durability and most importantly device size. If you are running behind this Arduino Nano got this covered for you.
  • Privacy — Arduino cares about your data and takes the precautions to make sure that your data is in safe hands.

TensorFlow Lite Micro now can be used with the Arduino Nano 33 BLE Sense. This was the much-awaited announcement for all the microcontroller lovers out there.

It doesn’t require operating system support, any standard C or C++ libraries, or dynamic memory allocation. The core runtime fits in 16 KB on an Arm Cortex M3, and with enough operators to run a speech keyword detection model, takes up a total of 22 KB.

The inference examples for TensorFlow Lite for Microcontrollers are now packaged and available through the Arduino Library Manager. We can now easily run them on Arduino in a few clicks. In this section, we’ll show you how to run them. The examples are:

  • micro_speech — speech recognition using the onboard microphone
  • magic_wand — gesture recognition using the onboard IMU
  • person_detection — person detection using an external ArduCam camera

For more background on the examples, you can take a look at the source in the TensorFlow repository.

TensorFlow Lite for Microcontrollers is designed for the specific constraints of microcontroller development. If you are working on more powerful devices (for example, an embedded Linux device like the Raspberry Pi), the standard TensorFlow Lite framework might be easier to integrate and more useful as well.

Trending AI Articles:

1. Introducing Open Mined: Decentralised AI

2. Only Numpy: Implementing Convolutional Neural Network using Numpy

3. TensorFlow Object Detection API tutorial

4. Artificial Intelligence Conference

TensorFlow Lite for Microcontrollers is an experimental port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with only kilobytes of memory. So,

The following limitations should be considered:

  • Support for a limited subset of TensorFlow operations are available (compared to the standard framework)
  • Support for a limited set of devices (all Arduino boards are also not supported till the date)
  • Low-level C++ API requiring manual memory management (If you are a python developer then this might be the toughest task)

Making TensorFlow Lite for Micro-controllers available from within the Arduino environment is a big deal, and as the availability of more pre-trained models, will be a huge change in the accessibility of machine learning in the emerging edge computing market. I will try running some models on Arduino and will share the experience.

Let me know your experience if you have worked already with these tools.!

Don’t forget to give us your ? !


TensorFlow + Micro-controllers was originally published in Becoming Human: Artificial Intelligence Magazine on Medium, where people are continuing the conversation by highlighting and responding to this story.

Via https://becominghuman.ai/tensorflow-micro-controllers-f517194209f?source=rss—-5e5bef33608a—4

source https://365datascience.weebly.com/the-best-data-science-blog-2020/tensorflow-micro-controllers

Published by 365Data Science

365 Data Science is an online educational career website that offers the incredible opportunity to find your way into the data science world no matter your previous knowledge and experience. We have prepared numerous courses that suit the needs of aspiring BI analysts, Data analysts and Data scientists. We at 365 Data Science are committed educators who believe that curiosity should not be hindered by inability to access good learning resources. This is why we focus all our efforts on creating high-quality educational content which anyone can access online.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Design a site like this with WordPress.com
Get started